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Figure  1:  Illustrations  of  HoloSound  showing  sound  identity,  source  location,  and  speech  transcription.  The  three  most  recent  
sounds  are  shown  at  the  bottom  left  of  the  display,  the  locations  of  at  most  four  simultaneous  sound  sources  are  shown  as  
circular  arcs  in  the  center,  and  the  speech  transcription  is  either  shown  as  subtitles  or  can  be  positioned  close  to  the  speakers  
in  the  3D  space  (not  shown).  See  supplementaryvideo.  

ABSTRACT  
Head-mounted displays can provide private and glanceable speech 
and sound feedback to deaf and hard of hearing people, yet prior 
systems have largely focused on speech transcription. We introduce 
HoloSound, a HoloLens-based augmented reality (AR) prototype 
that uses deep learning to classify and visualize sound identity and 
location in addition to providing speech transcription. This poster 
paper presents a working proof-of-concept prototype, and discusses 
future opportunities for advancing AR-based sound awareness. 
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1  INTRODUCTION  
Head-mounted  displays  (HMDs)  have  the  potential  to  provide  
glanceable,  always  available,  and  private  sound  and  speech  feedback  
to  deaf  and  hard  of  hearing  (DHH)  users  [4,  11,  19].  Yet,  most  prior  

supplementary video
https://doi.org/10.1145/3373625.3418031
https://doi.org/10.1145/3373625.3418031
https://doi.org/10.1145/3373625.3418031
mailto:leahkf@uw.edu
mailto:jonf@cs.uw.edu
mailto:smgoodmn@uw.edu
mailto:djain@cs.uw.edu
mailto:xb285@uw.edu
mailto:jkuang7@cs.uw.edu
mailto:yangy87@cs.uw.edu
mailto:grgrggtr@cs.uw.edu


        
         

ASSETS  ’20,  October  26–28,  2020,  Virtual  Event,  Greece  Ru  Guo  et  al.  

Figure  2:  The  three  components  of  HoloSound  system.  

work  on  HMD-based  feedback  has  focused  on  speech  transcription  
[11,  13,  19].  While  this  speech-centric  work  has  shown  promise  
in  making  conversations  accessible,  other  aspects  of  sounds  may  
also  be  useful,  such  as  the  identity  of  non-speech  sounds  [16]  and  
the  location  of  the  sound  source  [7].  Thus,  a  few  researchers  have  
investigated  showing  sound  localization  on  an  HMD  using  external  
microphone  arrays  [8,  13].  Finally,  although  not  on  HMDs,  past  
systems  have  identifed  and  conveyed  non-speech  sounds  (e.g.,  door-
bells,  knocking)  on  the  smart  home  displays  [16]  or  a  smartwatch  
[17].  

While  conveying  these  individual  sound  properties  was  deemed  
useful  [13,  14,  17],  in  real  life,  speech  and  sound  information  often  
co-exist,  and  must  be  conveyed  simultaneously.  Indeed,  in  a  recent  
large-scale  survey,  DHH  people  expressed  a  strong  desire  for  receiv-
ing  non-speech  sound  cues  along  with  the  speech  transcription  [3].  
Displaying  these  multiple  sound  cues  together  in  an  unobtrusive  
and  glanceable  manner  is  a  challenging  problem  that  remains  to  be  
explored.  

To  begin  investigating  this  problem,  we  present  an  early  proto-
type  of  an  augmented  reality  (AR)  based  system,  called  HoloSound,  
that  leverages  advances  in  deep  learning  and  sound  sensing  to  si-
multaneously  provide  three  key  desired  sound  properties  to  DHH  
users  in  real-time:  speech  transcription,  sound  identity,  and  source  
location  (Figure  1).  HoloSound  uses  a  speech-to-text  API  to  generate  
a  transcription  that  can  be  positioned  in  3D  space,  a  deep-learning  
engine  to  display  the  three  most  recent  non-speech  sounds  (e.g.,  
doorbell,  knocking),  and  an  external  microphone  array  to  visu-
alize  the  direction  of  at  most  four  sound  sources  in  the  vicinity.  
Though  our  current  user  interface  is  preliminary,  we  plan  to  refne  
HoloSound’s  design  through  a  design  probe  study  with  DHH  users.  

In  this  poster  paper,  we  describe  the  HoloSound  system,  discuss  
our  plans  for  future  user  evaluation  with  DHH  users,  and  enumerate  
opportunities  for  further  advancing  AR-based  sound  awareness.  

2  THE  HOLOSOUND  SYSTEM  
While  not  all  DHH  people  want  to  use  sound  feedback  technolo-
gies,  past  large-scale  surveys  with  DHH  people  [3,  4],  show  that  
many  would  fnd  such  technologies  desirable  and  useful  in  every-
day  activities.  HoloSound  is  informed  by  prior  AR-based  sound  
awareness  work  with  DHH  users  [11,  13,  19],  as  well  as  personal  
(e.g.,  [12])  and  research  experiences  (e.g.,  [15])  of  one  of  our  authors  
(Jain)  who  is  hard  of  hearing.  The  system  consists  of  two  parts:  an  
app  running  on  the  HoloLens  and  an  external  microphone  array,  
ReSpeaker  [20],  retroftted  on  top  of  the  HoloLens  (Figure  2).  A  

cloud-based  server  is  used  to  interface  the  portable  microphone  
array  with  the  HoloLens  and  to  run  the  sound  recognition  engine.  
Figure  1  shows  the  preliminary  user  interface.  Below,  we  detail  the  
three  key  components  of  HoloSound,  which  are  also  demonstrated  
in  the  supplementary  video.  The  system  is  open  sourced  on  GitHub:  
https://git.io/JJaHe.  

2.1  Speech  Transcription  
Many  DHH  users  use  speech-transcription  [6,  18],  and  a  recent  
survey  [4]  showed  that  HMDs  were  the  most  preferred  wearable  
device  for  speech  feedback.  To  transcribe  speech,  HoloSound  uses  
Microsoft  Azure’s  Speech-to-text  API  [21].  To  accommodate  mul-
tiple  contexts-of-use,  we  ofer  two  views  for  displaying  the  tran-
scribed  text:  windows  and  subtitles,  both  informed  from  prior  work  
[11],  which  used  a  human  transcriptionist  rather  than  automated  
methods  to  generate  captions  for  display  on  a  HoloLens  device.  

In  the  windows  view,  the  goal  is  to  reduce  the  visual  split  between  
the  transcribed  text  and  the  speaker,  hence  the  user  can  place  the  
text  windows  on  top  of  the  speakers  using  the  HoloLens’  pinch  
gesture  (Figure  3  left).  This  view  could  be  more  suitable  when  the  
speakers  are  stationary  (e.g.,  in  a  group  meeting  [19]).  We  use  the  
HoloLens’  3D  spatial  mapping  feature  to  recognize  the  environment  
and  automatically  position  the  captions  at  an  appropriate  depth  
near  the  user’s  desired  spatial  location.  

In  the  subtitles  view,  a  single  text  block  appears  at  a  fxed  distance  
in  front  of  the  user  and  moves  with  the  user’s  head  (Figure  3  right).  
This  view  is  analogous  to  video  captioning  and  could  be  preferred  
when  the  speakers  are  moving  (e.g.,  in  a  lecture  setting  [11]  or  while  
walking  [14]).  

For  both  views,  the  text  scrolls  up  and  disappears  as  the  new  
transcription  is  appended.  Users  can  also  customize  the  transcribed  
text’s  font  size  (default:  0.75°angular),  the  number  of  lines  (default:  
2),  the  width  of  each  line  (default:  60  characters),  and  the  distance  
of  captions  from  the  eye  (2m,  4m,  8m,  or  the  default:  projected  onto  
background  surfaces  (e.g.,  walls)  [14]).  To  stabilize  jitter,  the  text  
block  stays  at  the  same  location  and  smoothly  drifts  along  when  
the  user’s  head  moves  by  at  least  25°.  

2.2  Sound  Recognition  
Besides speech transcription, HoloSound shows the three most 
recently recognized sound events (e.g., doorbell, knocking) at the 

https://git.io/JJaHe
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Figure  3:  Speech-transcription  can  either  be  (A)  placed  on  top  of  the  speakers  in  the  3D  space  (windows  view)  or  (B)  move  with  
the  user’s  head  (subtitles  view).  

bottom-left  corner  of  the  display  (Figure  1).  We  use  a  deep  learning-
based  sound  classifcation  engine  running  on  a  cloud  that  continu-
ally  senses  and  processes  audio  in  real-time.  

To  create  the  classifcation  engine,  we  followed  an  approach  
similar  to  HomeSound  [16],  which  uses  transfer  learning  to  adapt  
a  deep  CNN-based  image  classifcation  model  (VGG)  for  sound  
classifcation.  This  model  achieved  an  overall  accuracy  of  84.9%  on  
sounds  recorded  in  the  homes.  To  train  the  VGG  model,  we  used  
sound  clips  of  19  common  sound  classes  preferred  by  DHH  people  
(e.g.,  door  knock,  fre  alarm,  phone  ring)  from  online  sound  efects  
libraries  (e.g.,  BBC  [22],  FreeSound  [5]).  All  clips  were  converted  to  
a  single  format  (16KHz,  16-bit,  mono)  and  silences  greater  than  one  
second  were  removed,  resulting  in  27.8  hours  of  recordings.  We  
then  used  the  method  in  Hershey  et  al.  [10]  to  compute  the  log-mel  
spectrogram  features,  which  were  fed  to  the  model.  

To  process  sounds  in  real-time,  HoloSound  uses  a  sliding  window  
approach  to  sample  the  microphone  at  16KHz  (16,000  samples  every  
second),  extract  the  log-mel  spectrogram  features,  and  upload  the  
1-second  bufer  to  the  cloud.  After  classifcation,  all  sounds  below  
50%  confdence  and  45dB  loudness  are  ignored.  

2.3  Sound  Localization  
The  third  key  desired  property  conveyed  by  HoloSound  is  sound  lo-
cation.  For  localization,  we  use  ReSpeaker  [20], an external portable 
4-microphone array (Figure 2), which we ultimately envision could 
be integrated into future AR devices. Though HoloLens has four 
onboard microphones [23], these microphones are specifcally de-
signed for voice input from the user (e.g., by enhancing audio input 
from the user’s face through beamforming) [1] and thus cannot be 
used for accurate localization. The ReSpeaker array is coupled to 
a Raspberry Pi 4 [24] running a modifed 3D Kalman flter sound 
localization algorithm [9]. After processing, the direction of at most 
four sound sources in the user’s vicinity is sent to the HoloSound 
app through a WIFI server. To visualize each sound, the continuous 
3D direction is projected to one of 12 discrete directions in the 
horizontal plane; these values are then shown as circular arcs in a 
top-down view on the HoloLens display’s vertical plane (Figure 1). 

3  DISCUSSION  
In this paper, we introduced an initial AR prototype for visualizing 
three key components of sound information on HMDs in real-time 
(sound identity, source location, and speech transcription). However, 
considerable work remains in studying this system with DHH users 
and iterating on its design. Below, we discuss our future plans for 
a user study and further exploration opportunities for AR-based 
sound awareness. 

UI exploration. While our current UI is preliminary, we plan 
to use HoloSound to prototype multiple UI designs and conduct a 
design probe study with 12-16 DHH individuals. Informed from a 
design space outlined in our past work [11], our goal is to explore 
how these designs may vary with diferent social contexts (i.e., 1:1 
meeting vs. a midsize meeting vs. a large lecture). Specifc research 
questions of interest, include: 

•  In  what  contexts  do  the  users  desire  full  transcription  vs.  a  
topical  summary?  

•  How  might  the  UI  design  vary  with  the  conversation  impor-
tance  (e.g.,  with  friends  vs.  at  workplace)?  

•  How  many  source  locations  should  be  shown  simultaneously,  
and  how  does  this  vary  with  context?  

•  What  non-speech  sounds  are  desired  for  each  context?  How  
should  these  sounds  be  visualized?  

•  Should  the  wearer’s  voice  be  transcribed?  

A key aspect of this study will involve balancing cognitive load 
with useful information. For example, if the user is involved in an 
important 1:1 meeting, the system could prioritize speech transcrip-
tion and show alerts for important non speech-sounds only (e.g., 
fre alarms). 

System  exploration.  We  will  also  perform  accuracy  and  per-
formance (latency, CPU, and memory usage) testing of our sound 
recognition and localization systems, which could have a signif-
cant impact on the user experience. For localization accuracy, we 
will place a sound source at diferent angles in front of our system 
and measure the mean angular error and standard deviation. For 
sound recognition accuracy, since the accuracy may vary with au-
dio contexts and background noise, a hearing user will wear the 
device in diferent physical locations (e.g., home, in transit, ofce) 
for several hours and report on whether the sound recognition is 
accurate. Finally, for performance testing, we will play recordings of 
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real-life  sounds  and  speech  on  a  computer  placed  near  our  system,  
and  measure  the  HoloLens’  CPU  and  memory  usage  as  well  as  the  
end-to-end  latencies  of  our  speech  transcription,  sound  recognition,  
and  sound  localization  features.  

Examining  complementary  haptic  feedback.  Another  po-
tential  area  of  exploration  is  complementing  the  visual  HMD  feed-
back  with  haptic  notifcations  delivered  through  a  smartwatch  or  a  
custom  hardware  solution.  While  haptic  feedback  provides  more  
limited  bandwidth  than  visual  feedback,  it  can  be  used  to  provide  
complementary  information—such  as  to  notify  the  user  of  an  impor-
tant  non-speech  sound  [6],  or  to  enhance  transcription  by  providing  
speech  tone  [2].  Future  work  should  compare  performance  tradeofs  
in  providing  haptic  notifcations  to  complement  visual  information.  
One  idea  is  to  conduct  a  controlled  study  with  varying  device  com-
binations  (HMD-only,  HMD  +  smartwatch,  HMD  +  custom  haptic  
hardware)  and  feedback  modalities  (visual-only,  visual+haptic).  
Participants  could  be  given  a  distractor  task  and  asked  to  localize  
sounds  emanating  from  a  circular  array  of  speakers  placed  around  
them,  while  measurements  of  speed  and  accuracy  of  identifying  
the  sound  source,  as  well  as  self-reported  cognitive  load  are  taken.  

4  CONCLUSION  
Our  work  contributes  the  design  and  implementation  of  an  aug-
mented  reality  system,  called  HoloSound,  that  uses  a  head-mounted  
display  and  an  external  microphone  array  for  transcribing  speech,  
identifying  sounds,  and  localizing  sound  sources,  which  are  dis-
played  to  the  user  in  the  3D  space.  HoloSound  is  open  sourced  
(https://git.io/JJaHe)  and  can  be  used  to  conduct  AR-based  design  
investigations  with  DHH  users.  
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