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Record sounds Train personalized model Iteratively test

Figure 1: Overview of the SPECTRA pipeline. In an interactive machine learning training workfow, users collect audio data 
samples (left), flter their data into a training dataset (center), and assess their model’s performance in a live environment 
(right). The design includes key elements to support the needs of DHH users during this process, including spectrogram and 
waveform audio visualizations of audio, data annotating to save useful contextual information, and an interactive clustering 
visualization of their dataset. 

Abstract 
We introduce SPECTRA, a novel pipeline for personalizable sound 
recognition designed to understand DHH users’ needs when col-
lecting audio data, creating a training dataset, and reasoning about 
the quality of a model. To evaluate the prototype, we recruited 12 
DHH participants who trained personalized models for their homes. 
We investigated waveforms, spectrograms, interactive clustering, 
and data annotating to support DHH users throughout this work-
fow, and we explored the impact of a hands-on training session on 
their experience and attitudes toward sound recognition tools. Our 
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fndings reveal the potential for clustering visualizations and wave-
forms to enrich users’ understanding of audio data and refnement 
of training datasets, along with data annotations to promote varied 
data collection. We provide insights into DHH users’ experiences 
and perspectives on personalizing a sound recognition pipeline. Fi-
nally, we share design considerations for future interactive systems 
to support this population. 
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1 Introduction 
Sound carries rich information about events around us, but it may 
go unnoticed or be inaccessible to individuals who are Deaf, deaf, or 
hard of hearing (DHH). Prior work shows that many DHH people 
desire sound recognition technologies to support personal safety 
(e.g., footsteps), social engagement (e.g., nearby voices), and every-
day tasks (e.g., monitoring home appliances) [4, 15, 30]. To meet this 
need, sound recognition tools have proliferated, both in the research 
literature (e.g., [31, 46, 57]) and in commercial applications—for ex-
ample, Android and iOS smartphones support sound recognition 
for common sounds like doorbells, running water, and dog barks. 

Despite these advances, DHH users have expressed a need for 
improved sound recognition accuracy and support for a wider range 
of sound categories [28]. One challenge is that the value of sound 
information is highly contextual: hearing identity [15], social con-
text [4], physical location [19], and individual preferences [15] can 
all infuence how a DHH user may beneft from sound information. 
These contextual diferences could be addressed by empowering 
DHH individuals to personalize a sound recognition model them-
selves [4, 20] or fne-tune a model to their local soundscape [30]. 
Personalization also has the potential to improve accuracy by pro-
viding examples specifc to an individual user’s context, such as the 
sound of their appliance or alarm rather than a generic one. 

However, an open question lies in how to efectively support a 
DHH user—who does not have full access to a sound themselves— 
in capturing and selecting suitable audio data to train a machine 
learning (ML) model [20]. Android and iOS recently introduced 
the ability to add custom sound categories [21] or tune the model 
for specifc alarms and appliances [2], respectively, through a brief 
recording process. While this approach is simple, allowing users 
with or without ML expertise to engage more directly with the 
machine learning pipeline through an interactive machine learning 
(IML) approach provides a sense of transparency and control [12], 
which can positively impact trust, satisfaction, and long-term use [1, 
38]. Prior work has begun to investigate the potential of IML for 
sound recognition systems for DHH users, but, in one case, did not 
provide non-auditory feedback to DHH participants [50] and in a 
second, only focused on data collection within the ML pipeline [20]— 
not including model training, evaluation, and iteration. 

In this paper, we introduce and explore SPECTRA—Sound Process-
ing and Enhanced Custom Training for Recognition Assistance—an 
interactive pipeline for the accessible creation of personalized sound 
recognition models. Our human-centered approach merges IML 
design guidelines [13, 52, 67] and the needs of DHH users [20, 50] 
to train a personalized sound recognizer via IML. To evaluate how 
SPECTRA supports DHH users in engaging in IML, we recruited 
12 DHH participants who each trained a personalized sound recog-
nition model for their home soundscape. We examined how spec-
trogram and waveform visualizations, interactive clustering, and 

rich text annotations can support DHH users across an interactive 
training cycle, and how their experience with these mechanisms 
can shape performance expectations, technical understanding, and 
confdence. We also investigated the impact of the experience on 
participants’ perceptions of and attitudes toward personalizable 
sound recognition models. 

Our fndings reveal new insights to support DHH users in per-
sonalizing sound recognition models, including demonstrating how 
interactive data clustering, in combination with waveforms, can 
enhance DHH users’ understanding of audio data, identifcation of 
outliers, and refnement of training datasets. We show the value 
of non-auditory data representations for DHH users at diferent 
stages of an end-to-end training cycle (data collection, training data 
selection, model testing) and explain how they incorporate this 
information into their reasoning about sound models. Our results 
also reafrm prior work showing DHH users’ preference for wave-
forms when recording [20]—while expanding on their value when 
selecting training data and testing—and show how users’ training 
strategies develop through use [50]. Finally, we provide insights 
into DHH users’ experiences and perspectives on personalizing a 
sound recognition model. 

In summary, our work contributes: (1) SPECTRA; a novel, end-to-
end pipeline to support DHH users with capturing sound examples, 
curating a training dataset, and testing the models they create; (2) 
results from a qualitative evaluation to understand the system’s 
benefts and obstacles for DHH users, including its impact on their 
conceptualizations of sound recognition models; and (3) design 
considerations and recommendations for future systems that meet 
the needs of DHH users during interactive training tasks. 

2 Related Work 
We situate our research within prior work on sound awareness 
tools, human-centered ML, and cultural and contextual factors that 
infuence sound awareness. 

2.1 Sound Awareness Tools and Technologies 
Prior work in sound awareness has introduced systems for auto-
matic captioning [27, 51], sound alerting [34, 37], and vibrational 
feedback [42, 60], including smartphone [43, 47], IoT [29], and 
wearable form factors [26, 68]. Surveys of DHH individuals reveal a 
widespread desire for sound recognition tools that can notify when 
a sound is detected [4, 15, 28, 31]. Following advancements in digital 
signal processing and machine learning, recent work has aimed to 
provide broad sound recognition support by employing pre-trained 
classifcation models [30, 31, 46, 57]. Jain et al. [30] installed a tablet-
based system for recognizing 19 sounds in four homes, observing 
concerns over inconsistent classifcation and desires to personalize 
the system for sounds specifc to each home. We build on this work, 
focusing on in-home personalization. 

DHH users frequently request personalization options for as-
needed support of their individual needs (e.g., [15, 44, 47]). Some 
pre-trained sound recognition models have allowed DHH users 
to flter notifcations for certain sounds [26, 31]—a customization 
option that is now available on Apple and Android smartphone 
platforms. Going a step further, Bragg et al. [4] conducted a Wizard-
of-Oz usability study of a smartphone app to train a custom model 
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from end-users’ recordings; DHH participants responded positively 
to the app’s workfow, but the experience did not include a func-
tional model. Continuing the thread, Jain et al. [28] surveyed 472 
DHH Android users about the platform’s sound recognition feature, 
confrming users’ desire for personalization options. The authors 
developed ProtoSound, a training pipeline with technical consider-
ations for DHH users (e.g., limited data, contextual fexibility)—-but 
they did not evaluate it with DHH users [28]. So far, researchers 
have not tested a functional, end-to-end system that meets the 
needs of DHH users. 

2.2 Human-Centered Machine Learning 
Human-centered machine learning aims to design and build auto-
mated systems that can fulfll user goals, ft user-specifc contexts, 
and accommodate people without programming experience [14, 53]. 
Several approaches have emerged to enable non-experts to build 
their own ML models. Automated Machine Learning (AutoML) 
(e.g., [10, 64]) systems allow novice end-users to provide a large 
batch of labeled data, while traditional ML tasks—such as fea-
ture engineering and model selection—are completed automati-
cally [12, 66]. In contrast to AutoML’s black box approach, inter-
active machine learning (IML) treats end-users as “humans-in-the-
loop” who iteratively engage in building and refning ML mod-
els [1, 13, 52, 59]. An IML workfow (like SPECTRA’s) involves a 
quick loop between model training, feedback, and usage, where the 
user may provide indicative samples, describe salient features, or 
select high-level model parameters [13, 59]. Interactive machine 
teaching [52, 69] takes IML engagement one step further by position-
ing the human-in-the-loop in the role of the model’s teacher, em-
phasizing human expertise to guide machine learning [63]. While 
each paradigm can help to guide the design of personalizable sound 
recognition tools, they also assume that an end-user has domain 
expertise and can readily interpret their model’s underlying data— 
assumptions that may not hold for DHH users and audio data. 

In the feld of accessibility, human-centered ML applications 
hold the potential for disabled users to personalize data-driven as-
sistive technology that meets their individual needs [32]. However, 
training an ML-enabled application as a personal assistive technol-
ogy can itself be inaccessible when it requires skills and abilities 
similar to those the application is intended to support [16, 49]. For 
example, a blind or visually impaired user is likely unable to use 
visual feedback when capturing images for personalizing an object 
recognizer—a challenge that Kacorri et al. and others (e.g., [33, 58]) 
frst examined and more recently began addressing through active 
feedback techniques to assist in the image capture step [24, 41]. 

Human-centered ML work with DHH users includes a workshop 
study by Nakao et al. [50], which sought to characterize ML un-
derstanding among DHH participants through their collaborative 
use of a sound recognition interface. Participants were uncertain 
about the contents and quality of sound data due to the absence 
of non-auditory feedback (e.g., visualizations) within the system. 
Goodman et al. [20] explored DHH participants’ experience captur-
ing real-world sound data with a waveform-based recording app; 
while the visualization assisted with data capture, users expressed 
uncertainty about overall dataset quality and nuanced sound cat-
egories. In light of these challenges with data interpretation, our 

work explores how non-auditory data representations can better 
support DHH users across an end-to-end training cycle. 

General IML research for audio has primarily focused on sample 
annotation and labeling (e.g., [25, 35, 36, 56]). For interactive sound 
recognition, Ishibashi et al. [25] explored visualization options (e.g., 
spectrograms, thumbnails) for browsing large sets of unlabeled 
audio samples via a clustering interface. Google’s Teachable Ma-
chine [7] allows non-expert users to quickly train a personal sound 
recognition model with their own audio samples, but it provides 
limited audio visualization (low-resolution spectrograms) and lacks 
information on the quality of a user’s training set (e.g., clustering 
feedback). Nakao et al.’s work [50] explored a comparable workfow 
(without visualizations) with non-expert DHH users, allowing them 
to create training sets by recording or selecting from a sound library. 
After a shared hands-on experience, DHH participants identifed 
additional use cases and showed an improved understanding of ML; 
however, some found it challenging to review samples and defne 
classes for sounds they were familiar with but unable to hear. 

This prior work—in combination with others [4, 28]—begins to 
outline an interface design space for personalizable sound recogniz-
ers for non-expert DHH users. As a next step, we built and evaluated 
a specialized IML workfow tailored to the unique needs of DHH 
users, advancing understanding of how non-auditory data repre-
sentations can support this population during interactive sound 
recognition tasks and yielding insights towards the design of future 
tools in this area. 

2.3 Cultural and Contextual Factors of Sound 
Awareness 

Designing efective sound awareness technology requires under-
standing the DHH population’s wide-ranging preferences. An in-
dividual with hearing loss may identify as Deaf (capital ’D’), deaf, 
or hard of hearing [39, 48]. Individuals who identify as Deaf follow 
an established set of norms, behaviors, and language [40], which 
contrasts with hard of hearing or deaf individuals, for whom deaf-
ness is primarily an audiological experience. While prior work has 
shown widespread interest in sound awareness among DHH peo-
ple [4, 15, 29, 44], this interest is modulated by cultural factors. 
An online survey by Findlater et al. [16] with 201 DHH partici-
pants found that people who prefer oral communication are more 
interested in sound awareness than those who prefer sign language. 

While accounting for the diverse perspectives of DHH peo-
ple, prior work also highlights several general preferences among 
DHH users. When discussing sounds of interest, DHH users gen-
erally rank urgent sounds (safety-related alarms, sirens) as most 
important, followed by those indicating others’ presence (door 
knocks, footsteps) and appliance alerts (oven timers, pop-up toast-
ers) [4, 15, 44, 57]. As previously mentioned, however, the relevance 
of certain sounds can depend on one’s social context [4, 15, 26] and 
physical location [19]. Overall, the most desired dimension of sound 
information is identity (i.e., what sound is occurring), which users 
prioritize compared to other characteristics like volume or dura-
tion [4, 15, 19]. However, context may again infuence preferences; 
for example, sound identity may be adequate in the home [30], but 
directional indicators hold more importance while mobile [46]. 
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3 SPECTRA: A DHH-Centered Pipeline for 
Personalized Sound Models 

To investigate how visualization techniques can support DHH users 
in personalizing their own sound recognition models, we built 
SPECTRA (Sound Processing and Enhanced Custom Training for 
Recognition Assistance), a prototype IML web application. The 
pipeline’s design was informed by related sound awareness liter-
ature [4, 20, 28, 50] and guidelines for human-centered ML sys-
tems [13, 52, 55, 67]. SPECTRA has a three-step workfow: users 
frst generate a training dataset, then edit the training set and gener-
ate a model, before testing the model’s real-time sound recognition 
capacity. In this section, we describe the implementation of each 
step and outline the pipeline workfow and functionality. 

3.1 Spectrogram and Waveform Feedback 
SPECTRA uses high-fdelity waveform and spectrogram visualiza-
tions to convey audio data to DHH users (Figure 2). Waveforms 
show the amplitude—or loudness—of audio over time and are com-
mon in audio recording, editing, and playback software. DHH partic-
ipants in prior work reported waveforms were intuitive and useful 
for capturing audio examples, though the amplitudinal feedback 
alone was inadequate for verifying the recordings’ quality (e.g., 
no co-occurring sounds) [4, 20]. They further requested that the 
visualizations remain active before and after recording to monitor 
the ambient soundscape, while audio playback helped those with 
residual hearing to analyze waveforms with unclear meanings [20]— 
both of which are included in SPECTRA. 

Spectrogram visualizations ofer greater information through-
put by visualizing both amplitude and frequency and are com-
monly used for discriminating noises in environmental soundscapes 
(e.g., [11]). While spectrograms can be powerful data interpretation 
tools for experienced users [8], DHH participants had a mixed re-
sponse following brief use in a lab setting [20]. Models trained with 
SPECTRA—like many sound recognition models (e.g., [28, 57])—take 
Mel spectral features (i.e., frequencies bucketed to approximate hu-
man hearing) as input, meaning that users viewing spectrograms 
see the same audio properties the model uses to make decisions.1 

We include both visualizations to cater to DHH individuals’ diverse 
preferences and learning styles and explore their efect on users’ 
decision-making about a training dataset. 

3.2 Interactive Data Clustering 
SPECTRA includes a three-dimensional data clustering visualiza-
tion to help DHH users understand and refne an audio dataset 
(Figure 3). We draw from prior work on interactive data cluster-
ing [3], including sound clustering with hearing users [25], to ad-
dress the unique challenges DHH users face in an iterative training 
process. Goodman et al. found DHH individuals had issues with 
discerning variations in sounds (e.g., porcelain vs. metal faucets) 
and anticipating how audible diferences will afect model perfor-
mance [20].2 SPECTRA’s clustering visualization complements the 

1When displaying Mel spectrograms, SPECTRA converts amplitude values to a loga-
rithmic dB scale; this “log-Mel” scaling more closely aligns with how humans perceive 
sound. 
2Although neural networks “hear” sounds diferently from humans, hearing users can 
use audible diferences to make a relative estimation of potential issues within a model 
(e.g., garbage disposal and cofee grinder); DHH users may lack this ability. 

waveform and spectrogram displays—which show individual audio 
instances—by rendering the structure and diversity of the broader 
dataset. We employ UMAP dimensionality reduction [45] to project 
high-dimensional spectral audio features into an embedding space, 
where similar examples colocate while distinct examples separate. 

UMAP is noted for its speed and preservation of datasets’ global 
structure, which may help DHH users to better understand and 
make informed decisions about their training datasets. During 
development, we determined that, though more complex, three-
dimensional embedding space allowed for greater visual discrimi-
nation between clusters. With SPECTRA’s 3D visualization, users 
can rotate and zoom to explore the clusters and identify outliers, 
ambiguous examples, or underrepresented classes. For instance, a 
cluster of data points labeled as “dog bark“ that appears distant 
from other dog bark clusters might prompt investigation into un-
usual background noise or varying bark types. While not directly 
visualizing model parameters, clustering visualizations may guide 
users’ choices to refne their training dataset, such as removing 
outlier examples (if determined to be unrepresentative or misla-
beled), merging or splitting classes, or collecting additional data. 
After updating the training dataset and regenerating the clustering 
visualizations, users can see the impact of their changes on the 
separation of their classes. Thus, SPECTRA provides users with an 
ongoing and evolving representation of how diferentiable their 
data is for guidance through the iterative training process. 

3.3 Rich Data Annotations 
During data collection, SPECTRA allows users to annotate their 
recordings with textual descriptions, capturing contextual details 
(e.g., water running from bathroom vs. kitchen sink). Annotations 
serve as a form of semantic metadata for users, separate from model 
labels. Many real-world sounds vary depending on their source, pro-
duction method, or environment—a challenge when personalizing 
sound recognition models, where users need to provide a repre-
sentative dataset for the model to generalize to their environment. 
DHH users in prior work questioned the meaning of diferences 
among their recordings and the impact of sound variations on their 
models’ performance [20]. SPECTRA encourages users to identify 
and capture variations of each sound (e.g., faucet → stream, drip), 
drawing from the concept decomposition process of the interactive 
machine teaching paradigm [52, 63]. Annotations allow DHH users 
to document domain expertise not readily apparent with SPEC-
TRA’s visual feedback alone, such as clarifying subtle diferences in 
waveforms/spectrograms or supporting reasoning about loose or 
separated clusters with the same sound label. Annotations are dis-
played alongside SPECTRA’s visualizations during data selection, 
serving as a memory aid and reasoning tool to make sound data 
more understandable to DHH users. 

3.4 SPECTRA Implementation and Workfow 
We built SPECTRA using Node3 and Svelte4 from a fork of Mar-
celle.js5, an open-source toolkit for creating ML workfows and in-
terfaces [17]. To enable transfer learning from a pre-trained sound 

3Version 18.12.1. https://nodejs.org/
4Version 3.48.0. https://github.com/sveltejs/svelte 
5Version 0.6.0. https://github.com/marcellejs/marcelle 
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Figure 2: Spectrogram and waveform visualizations for four diferent sounds within the SPECTRA workfow. (A) While 
recording, a stacked spectrogram and waveform display streaming audio input over a 10-second window. (B) After recording, 
the stacked visualization shows the full duration of the captured audio. When selecting training data, each recording is 
segmented at 1-second intervals, which users can choose to display as (C) spectrogram or (D) waveform icons. 

Figure 3: Clustering visualizations within SPECTRA, showing the structure of unedited audio datasets with (A) two sounds, 
(B) four sounds, and (C) six sounds. As the size/variety of the dataset increases, so does visual complexity. (D) Curating the 
raw six-sound dataset (i.e., removing mislabeled examples) shows greater separation for many clusters, though some overlap 
persists. Note: Hovering over a data point displays the example’s label and the annotation (metadata) of its parent recording. 

model, SPECTRA is powered by the 6 Speech Commands API  from 
Tensorfow.js [62], which employs a convolutional neural network 
(CNN) pre-trained on the Speech Commands dataset (50K examples 

6Version 0.5.4. https://github.com/tensorfow/tfjs-models/blob/master/speech-
commands/ 

from 20 classes) [65]. CNNs are commonly used in sound recogni-
tion due to their ability to learn complex patterns in audio data [22]. 
SPECTRA uses the API’s transfer learning functionality—where a 
pre-trained model is re-used as a feature extractor for new classes, 
reducing training time and resources—to apply the speech-trained 
base model to the environmental sound domain. We chose this 

https://github.com/tensorflow/tfjs-models/blob/master/speech-base
https://Tensorflow.js
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Figure 4: The “My Sounds” page, used for data collection. 
(A) Users select a sound class to begin collection. (B) They 
can record with a live waveform and spectrogram of their 
device’s microphone input, and (C) annotate the recording 
with relevant contextual details. (D) Alternatively, users can 
select pre-recorded examples from a categorized library of 
video clips. (E) Users can review collected recordings for the 
selected class. 

library for its ease of development, rapid prototyping capabilities, 
suitability for in-browser use, and lightweight package. These al-
lowed us to focus on the interactive aspects of the system and study 
how DHH users engage with the IML workfow. 

To custom train the sound recognizer, users capture continuous 
audio recordings via the web browser’s built-in Web Audio API. 
To match our classifcation model’s input features (1-second Mel 
spectrograms with a 43 × 232 shape size), users’ recordings are 
segmented at 1-second intervals, converted to spectrograms using 
the Short-time Fourier transform (STFT), then converted from the 
linear frequency scale to the logarithmic Mel scale. These Mel 
spectrograms are presented to users as “examples”, and the user 
can select specifc segments to include as training data. 

While prior work has explored mobile devices for recording au-
dio for personalizable sound recognition [4, 20], we focus on the en-
tire IML workfow and thus designed SPECTRA for laptop/desktop 
screens. We do not assume this is an ideal format for end-users; 
instead, we leverage the large screen size to present multiple high-
fdelity visualizations in tandem (waveform, spectrogram, and/or 
clustering) and learn about salient information to assist DHH users 
when personalizing a sound recognizer. SPECTRA’s UI is organized 
into three tabs (“pages”) corresponding to diferent stages of the IML 
workfow [13]: (1) planning and data collection; (2) data curation 
and model training; and (3) iterative model testing. 

3.4.1 Planning and Data Collection. SPECTRA users start at the 
“My sounds” page (Figure 4), which aligns with the planning and 
data collection stages of a typical interactive ML workfow (e.g., [13]). 
Users frst defne and create placeholder classes for desired recog-
nizable sounds in the “My sounds” panel (e.g., “my dog barking” 
or “stovetop fan”). SPECTRA currently supports adding up to 10 
distinct classes of sounds. The “My sounds” panel (Figure 4a) is 

Figure 5: The “Train” page, used for training data curation. 
(A) Users select a sound class to flter their sampling set. 
(B) Examples are shown as 1-second spectrograms, which 
can be toggled for inclusion in the training dataset. (C) Users 
generate a three-dimensional clustering of the selected train-
ing data and can rotate or zoom to inspect the clusterings. 
Hovering on a point will show its label and text annotation; 
(D) clicking on it will highlight the example in the data selec-
tion panel. (E) Users train a model with the selected training 
dataset. 

available across all three pages on the left sidebar. The user then se-
lects a specifc sound class to initiate data collection, which activates 
the center and right-side UI panels. 

To collect data, users navigate to the center panel (Figure 4b) 
and click the “Start listening“ toggle. Live microphone data is then 
visualized via the waveform and spectrogram visualizations (but 
not yet recorded). After resolving any unwanted background noise, 
the user can collect data with the “Record” and “Stop” buttons. 
While recording, SPECTRA shows users a running count of the col-
lected examples (i.e., number of 1-second spectrogram increments). 
Users can add text annotations before or after recording to note 
additional information, such as sound variations (e.g., bathroom 
vs. kitchen sink) or unplanned sound activity (e.g., a cat meowing 
mid-recording) (4c). Alternatively, for hard-to-record or unavailable 
sounds, (e.g., sirens), users can import existing recordings from the 
AudioSet library of categorized YouTube clips [18] (Figure 4d). If 
they are satisfed with the recording, users can save it to their sam-
pling set, which shows up on the right-side pane under “My sound 
recordings” (Figure 4e). Before users can move on to SPECTRA’s 
“Train” page, they must collect at least 30 examples of each sound 
(encouraged to be varied across a few 5-10 second recordings)— 
a threshold selected to ensure sufcient data for model training 
without overburdening users. 

3.4.2 Data Curation and Model Training. In the second stage, users 
navigate to the ”Train” page, where they review their data, refne 
the training dataset, and train a model (Figure 5). On this page, 
when users select a sound class from the “My sounds” panel (Fig-
ure 5a), the center panel populates with one-second examples of 
that sound (Figure 5b). The examples, grouped by recording, are 
presented as spectrograms, with the option to switch to waveform 
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Figure 6: The “Test” page, used for practical assessment. 
(A) Users toggle their microphone “on” to begin streaming 
recognition. (B) Users produce sounds in the environment 
and observe the model’s predictions as confdence scores 
(with a bar graph and percentage). (C) A vertical timeline 
also shows the highest-scored sound at each second of the 
previous two minutes. 

visualizations. Users can select which examples to include or ex-
clude in the training dataset, with all examples included by default. 

SPECTRA’s emphasis on data iteration aligns with practices ob-
served among expert ML practitioners, who typically prioritize 
dataset refnement over changes to the models themselves [23]. To 
support users’ understanding of their dataset, SPECTRA includes 
an interactive data clustering panel (“Data Map”; Figure 5c). As 
they flter out low-quality or unrepresentative examples, users can 
generate new embeddings of the updated dataset in latent space to 
monitor how the overall structure changes. The clustering visual-
ization uses UMAP for dimensionality reduction [45] (enabled by 
UMAP-js7) of the high-dimensional Mel spectrograms as training 
features. For simplicity, we chose pre-set UMAP parameters8 after 
testing with several audio datasets. These 43 × 232 arrays are re-
duced to a 1 × 3 size and plotted in 3D space with ScatterGL9, using 
a unique symbol to represent each sound class in the embedding 
space (located next to that class in the “My Sounds” panel). While 
embeddings generated from SPECTRA’s base model’s feature space 
may provide better scalability and align more with perceptual simi-
larity, our dimension-reduction of the Mel spectrograms provided a 
fast and light-weight method that was acceptable for the constraints 
of our evaluation—serving as a design probe into how to support 
DHH users’ reasoning about algorithmic interpretations of sound. 

Users explore the clustering visualization by rotating (click and 
drag) or zooming (scroll), and they can select an individual point 
to highlight its corresponding example in the selection panel for 
further inspection (5d). Users can iteratively adjust the training set 
and observe its efect on clustering, moving toward more clearly 
diferentiated sound classes. Once satisfed with the refned training 
set, clicking the “Train” button creates a new model, which users 
assess on the third page. 

7Version 1.3.3. https://github.com/PAIR-code/umap-js 
8UMAP-js parameters: nComponents = 3, nEpochs = 500, nNeighbors = 20, 
minDist = 0.1, spread = 1.0, supervised = false 
9Version 0.0.13. https://github.com/PAIR-code/scatter-gl 

3.4.3 Model Testing. In the third and fnal stage, users navigate to 
the “Test” page, where they can assess the practical performance of 
their personalized model’s latest iteration ( Figure 6). Users activate 
a toggle switch to initiate streaming recognition (Figure 5a) and 
can then produce sounds to evaluate the model’s predictions in 
a live environment along with both waveform and spectrogram 
visualizations. This practical assessment allows users to evaluate 
the model’s performance in its intended use context and under 
realistic conditions. In the “My sounds” panel on this page, real-
time predictions are displayed with a confdence score and bar chart 
below each class label (5b). Sounds recognized with a confdence 
score of 70% and above are added to a history panel on the right 
with a timestamp (5c).10 After testing, users may return to the 
previous pages to add or remove sound labels, collect additional 
sampling data, or modify their training data and train a new model. 

4 Evaluation 
To evaluate SPECTRA and study how DHH users engage in IML 
to custom-train a sound recognition model, we recruited 12 DHH 
users for a two-hour, single-session remote user study. Participants 
used SPECTRA to create a personalized sound recognizer from their 
home soundscapes. Our primary research questions were: 

• How do DHH users feel about sound recognition technol-
ogy and the role of custom-trained AI to improve and/or 
personalize sound classifers? 

• How did DHH users engage with SPECTRA to interactively 
train a personalized sound model? Specifcally, how did fea-
tures like the waveform/spectrogram visualizations, inter-
active data clustering, and rich data annotations support 
and/or limit the IML process? 

• How did using SPECTRA change perspectives about AI and 
their confdence in custom training a model? 

Below, we describe our participants, the three-part study procedure, 
and our analysis method and positionality. 

4.1 Participants 
We recruited 12 DHH participants from two university-maintained 
study recruitment email lists and snowball sampling—see Table 1 
for demographic details. Five participants identifed as Deaf, fve 
as hard of hearing, and two as deaf. Four participants reported 
using hearing aids; four used cochlear implants; two used both. We 
included two technology-related screening requirements: weekly 
laptop or desktop computer use and daily smartphone use for tasks 
other than phone calls and text messaging. Participants also needed 
access to a laptop or desktop computer at home with a working 
camera and microphone, a stable Internet connection for videocon-
ferencing, and Google Chrome to use SPECTRA. Nine participants 
used a laptop; three used a desktop. Participants received an $80 
gift card as compensation for the 120-minute session. 

We did not screen for prior ML experience among participants, 
as we designed SPECTRA to assist all DHH users interested in 
personalizing a sound recognition model. As a whole, participants 
self-reported moderate confdence in explaining basic principles 

10The 70% threshold for sounds added to the history panel refects a need for higher 
confdence in our study’s 6-class models when compared to lower confdence thresholds 
used for larger-class models in prior work (e.g., 50% [31], 60% [28]). 

https://github.com/PAIR-code/scatter-gl
https://github.com/PAIR-code/umap-js
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Table 1: Demographics of study participants. HH = hard of hearing. 

ID Gender Age Identity ML Exp. Hearing dev. Relationship to sound 

P1 Female 18 - 24 deaf Cochlear imp. “Sound is extremely important to me in my daily life and in general.” 

“I was born profoundly deaf. I used hearing aids growing up but stopped since they didn’t help P2 Male Over 55 Deaf None me enough. I rarely relate to or experience sound.” 

“I have to rely on sound awareness from my Hearing family members or friends to alert me. I’m
P3 Female 35 - 54 Deaf None very sensitive to loud vibrations, such as blasting from music, door slamming, or my iPhone 

beeping.” 

“I am hard of hearing with profound loss on one side so it is difcult to experience full sound P4 Male 25 - 34 HH Both unless I use my hearing aid” 

P5 Male 35 - 54 Deaf Hearing aids n/a 

P6 Female 25 - 34 HH yes Both “I relate to and experience sound through hearing and hearing aids” 

“I’m no where [near] perfect hearing. [...] If someone is talking behind me I can only clearly hear 
P7 Female 25 - 34 HH yes Cochlear imp. a few words, not everything. If I am face to face, I understand perhaps 60-70% better than I did. 

Some folks can do better than me, and that’s ok.” 

“It’s a love hate relationship. I love stuf like music and spoken languages enable me to relay 
P8 Male 25 - 34 Deaf yes Cochlear imp. technical information (where ASL has not caught up to yet) however I get listeners fatigue rather 

quickly [...] and have trouble distinguishing location without visual cues.” 

“I love music, but as my hearing has gradually declined, I’ve found it more difcult to notice 
P9 Male 18 - 24 HH Hearing aids and enjoy the musical aspects of life. When communicating with others verbally, I use context 

clues and patterns of speech intonation to help determine what words are possibly being said.” 

“I generally experience sound as normal hearing people do except for speech. When I can’t 
P10 Female 25 - 34 HH yes Hearing aids understand people it’s not that I don’t hear them, I just feel like they are mumbling and I can’t 

understand them.” 

P11 Male 18 - 24 deaf yes Cochlear imp. “I use a Nucleus Cochlear Implant to hear sounds.” 

P12 Male 25 - 34 Deaf Hearing aids “I use sound to listen to music and to identify what is going wrong with my location.” 

of machine learning (e.g., training data, predictions, models)—on 
a 7-point scale, the average response was 4.8 (SD=1.3, range=3-6). 
Five participants mentioned hands-on ML experience during the 
session (Table 1)—ranging from a brief university project (P6) to 
regular ML use for research (P8)—but none had worked on audio 
models before our study. Our study explored changes in their per-
ceptions of audio models in particular (e.g., tolerable performance 
levels before/after use), and we note users’ experience where rele-
vant in our fndings. 

4.2 Study Procedure (120 min) 
The study session had three parts: (1) introducing participants to 
technical concepts and SPECTRA; (2) using SPECTRA to record 
data, train, and test a personalized sound recognition model; and 
(3) a semi-structured interview discussing the experience. Before 
the study, we administered an online questionnaire to collect de-
mographics, use of sound support technologies, confdence in ex-
plaining ML concepts, and prior experience with smartphone sound 
recognition tools. The frst author led all interviews remotely using 
videoconferencing software with automatic captioning enabled. 
Participants could request sign language interpreting or real-time 
captioning accommodations; four opted for interpreters to join the 
call. Participants received consent forms via email and provided 
verbal consent at the start of the session. 

4.2.1 Tutorial and Pre-Use Interview (30 min). Sessions began with 
fve minutes for Zoom setup and orientation, followed by a tutorial 

slide deck11, which participants could navigate at their own pace. 
The tutorial, informed by prior work on IML systems for non-
expert users [55, 67], provided an overview of sound recognition 
models’ learning and decision-making, the diferences between 
generalized and personalized models, and possible advantages of 
personalization. It then introduced each stage of the SPECTRA 
pipeline, with accompanying screenshots demonstrating recording, 
training data selection, model training, and assessment as well 
as explanations of spectrogram, waveform, and data clustering 
visualizations (e.g., “Examples closer together are more similar, while 
those further apart are more diferent” ). We encouraged participants 
to ask questions throughout the tutorial. 

Upon completing the tutorial, participants responded to rating 
scales measuring their self-reported confdence in recording, train-
ing data selection, assessment, and using SPECTRA, along with 
their performance expectations and error tolerance. Each rating 
consisted of a subjective statement (e.g., “It’s okay if a sound recogni-
tion model that I have trained occasionally makes mistakes” ) followed 
by a 7-point agreement scale from “Completely disagree” to “Com-
pletely agree”. We then conducted a brief interview to elicit feedback 
on the benefts, drawbacks, and desired sounds for a personalized 
sound recognition model, along with strategies for capturing di-
verse examples and their tolerance for model errors. 

11The full tutorial slide deck is available in Supplementary Materials 
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4.2.2 System Use (60 min). After completing the tutorial, partici-
pants accessed SPECTRA via a shared link and began screen-sharing 
with videoconferencing. We instructed participants to “think aloud” 
throughout system use and to freely voice any questions, observa-
tions, suggestions, or concerns that arose. For participants using 
ASL, comments followed or preceded system interactions, rather 
than occurring concurrently. To prevent signifcant barriers to train-
ing a model, the researcher provided troubleshooting and clarifca-
tion support where appropriate; we noted these areas of friction 
and included them in our analysis. 

We asked participants to train a model with fve sound classes, 
plus “background noise” to provide a baseline for the ambient 
soundscape—a decision informed by Jain et al.’s survey in which a 
majority of Android sound recognition users desired notifcations 
for six sounds or fewer in a single location [28]. To orient partic-
ipants, we asked them to turn on their microphone and observe 
the visualizations while no one spoke or acted and then to see 
how they changed when intentionally making noise. We defned 
the soundscape in the absence of intentional noise as “background 
noise” for this study. We pre-selected three sounds (door closing, 
faucet, and phone) based on how easily they could be produced 
and the range of possible variations. Participants brainstormed and 
then selected the remaining two sounds. 

Data collection. Participants began by collecting at least 30 sec-
onds of audio for each sound. The researcher guided participants 
through recording background noise, and participants indepen-
dently collected the remaining sounds. We encouraged recording 
from the environment where possible, using the sound library only 
if needed; no participant ultimately chose to collect audio from the 
sound library. We instructed participants to aim to “capture the 
real-world variations” that may occur for each sound and prompted 
them to consider and record how sounds could happen diferently 
in their home (e.g., “running your faucet on full vs. a light stream”), 
We reminded them to use annotations to track any recorded sound 
variations (e.g., faucets in diferent rooms) or other relevant details. 
Because prior work [30] found that distance from the microphone 
to the sound source does not have a signifcant impact on model 
performance, we did not emphasize recording location as a key 
variable for consideration; however, some participants chose to 
move their devices throughout the home while recording. After 
collecting data, we ofered a 5-minute break before continuing. 

Model training. Participants then moved to the “Train” tab 
to flter their sampling dataset into a training set. We instructed 
participants to generate an initial clustering for the full dataset 
frst and share their observations of outliers, overlapping sounds, 
or well-separated classes they observed. We then asked them to 
review each sound class, removing any examples they believed were 
unsuitable for the training set while explaining their reasoning. The 
researcher periodically prompted participants to generate a new 
clustering chart after making changes to the selected dataset then 
discussed any perceived changes and perceptions of its implications 
for their model. We encouraged participants to continue refning 
their training data set until they felt satisfed, probing participants 
about what they were observing that drove decisions to remove or 
include data. Participants leveraged both the visualization of each 
sample and the clustering visualization to reason about in/exclusion. 

Once satisfed with their training set, participants trained a new 
model with this data. 

Model testing. Proceeding to the fnal tab (“Test”), the researcher 
asked participants to assess their model’s real-world capability for 
everyday use by reproducing each sound for at least 10 seconds, 
reminding them of any variations they had identifed earlier. Par-
ticipants discussed the model’s output, theorizing about potential 
reasons for misclassifcations and possible fxes to improve per-
formance. After testing each sound, participants could use their 
remaining time to return to the previous tabs to adjust their model 
as desired (e.g., record more data, continue refning the dataset) 

4.2.3 Semi-Structured Interview and Rating Scales (30 min). We con-
cluded the study with a post-use questionnaire and semi-structured 
interview. The questionnaire measured changes in confdence and 
performance expectations after use (mirroring statements on the 
pre-use ratings); satisfaction with recordings, training data, and 
model accuracy; and the usefulness of the text annotations, wave-
form, spectrogram, and clustering visualization. The interview ex-
plored overall satisfaction, experience with each step of the applica-
tion, confdence in independent training, and opinions on the data 
exploration mechanisms and potential UI improvements. 

4.3 Analysis and Positionality 
We collected each participant’s usage logs, audio recordings, and 
training datasets to further characterize their responses and expe-
rience with the pipeline. We used Zoom’s automatic captioning 
to transcribe study data, relying on voiced interpretations as an 
accurate representation of signers’ responses. We iteratively coded 
transcripts using refexive thematic analysis [5, 6]. Our analysis was 
semantic and realist, and we developed themes using a mixed induc-
tive and deductive approach; for example, we structured broader 
theme development around the distinct tasks at each step of person-
alizing a sound recognizer (i.e., recording, choosing training data, 
testing), but we organically identifed themes within each step. The 
frst author read through the data, generated initial codes, and then 
applied these codes to data from two randomly selected participants. 
Another researcher reviewed the coded data and then met with 
the frst author to discuss the codes and application strategy. The 
frst author coded the remaining transcripts and generated themes 
from data excerpts collated from each code. A refexive approach 
to thematic analysis emphasizes fndings that are actively shaped 
by the research team’s own social, cultural, and academic biases. 
All authors are hearing, while past collaborators—who contributed 
to the early system and study design—are Deaf or hard of hearing. 
All research team members have backgrounds in human-computer 
interaction, and many are computer scientists by training. 

5 Findings 
We present fndings organized around our primary research ques-
tions: (1) pre-use expectations and feelings about sound recognition 
technology; (2) engagement and use of SPECTRA to interactively 
train a sound recognition model; and (3) post-hoc reactions to the 
experience, including self-confdence, performance tolerances, and 
technical understanding. We begin with an overview of SPECTRA’s 
usage, the collected data, and model training. 
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Table 2: Collected data and system usage for study participants. (Column A) Participants chose sounds to train in addition 
to the required “background noise”, “door closing”, “faucet”, and “phone” sounds. (B) They captured at least one n-second 
recording of each sound. (C) Their recordings were segmented into 1-second examples to use as training data. (D) They selected 
a subset of the examples to train a model. (E) They generated clusterings to visualize diferent iterations of this subset. 

ID (A) Sound choices (B) Total 
recordings 

(C) Total 
examples 

(D) Training 
examples 

(E) Clusterings 
generated 

P1 Microwave running, Knocking 10 205 191 2 
P2 Door knock, Washer/dryer signal 10 265 215 6 
P3 Dryer, Stove Exhaust Fan 6 174 160 2 
P4 Fridge, Vacuum, Printer 12 280 255 4 
P5 Keyboard, Door knock 6 214 172 4 
P6 Zipper, Male voice 12 218 202 6 
P7 Door knock, Keyboard typing 8 250 238 4 
P8 Microwave, Footsteps 16 263 212 4 
P9 Knocking, Garage door 9 422 257 6 
P10 Stovetop fan, Blinds 13 327 212 5 
P11 Vacuum, TV 11 284 261 8 
P12 Door knocking, Shower 7 341 254 3 

5.1 Overview of Collected Data and SPECTRA 
Usage 

All participants were able to train a personalized model using 
SPECTRA. In total, participants captured 120 recordings across 
70 sound classes12—see Table 2. The most common created sound 
class was “Door knock”/“Knocking” (N =6/12) followed by “Mi-
crowave”, “Stove fan”, and “Keyboard” (N =2 each). Participants 
collected an average of 1.7 recordings per sound, with an average 
duration of 27.0 seconds (SD=4.6, range=2-104). Recordings were 
automatically segmented into 1-second Mel spectrograms, result-
ing in 46.3 examples per sound on average (SD=10.3, range=30-
104). To improve model robustness, we instructed participants to 
consider diferent ways sounds could happen in their homes. A 
few participants captured this variation within a single recording 
(e.g., P12’s annotation: “Shower with many varieties”), but most 
chose to collect separate, annotated recordings (e.g., P10: “faucet 
low”/“medium”/“high stream”). 

For training and testing, participants spent an average of 20.7 
mins (SD=5.7) on the “Train” page and 10.6 (SD=2.0) on the “Test” 
page. The training itself was interactive and iterative, with nearly 
half of the time spent focused within the clustering chart—on aver-
age, participants clicked on 7.5 clustering points and regenerated 
clusterings 4.5 times (SD=1.8, range=2-8) after making changes to 
their training dataset. Participants removed an average of 8.6 exam-
ples in their fnal training datasets (23% reduction), demonstrating 
the visualizations’ infuence on their decision-making. Overall, fnal 
training datasets averaged 37.7 examples per sound (slightly above 
the minimum requirement). 

12Two participants (P3, P5) removed “Phone” due to issues producing the sound (i.e., 
an alarm or ringtone). P9, a desktop user, replaced “Faucet” with “Printer” due to 
proximity. 

5.2 Pre-Use Perceptions and Expectations 
In the pre-study questionnaire, most participants (N =7) expressed 
positive interest in automatic sound recognition technology (“likely” 
or “extremely likely” to use it), including for urgent (P7: “smoke 
alarm” ), social (P1: “someone arriving home” ), and appliance sounds 
(P9: “oven timers” )—aligning with prior work [4, 15]. Four partic-
ipants remained “neutral”, while P6 was “unlikely” to use such 
technology. Participants also identifed several uses for personal-
ized models, most commonly related to identifying specifc speakers 
(N =5) and nuanced pet sounds (N =4). 

Five participants reported using sound notifcation features on 
their smartphones, albeit infrequently (semi-monthly or less), cit-
ing limited sound selection support and inaccurate recognition as 
key issues—echoing past fndings [28]. Only P5 had previously at-
tempted to add a custom sound class (on the iPhone), but even here, 
he had experienced issues: “It’s like, ‘Someone’s knocking at the door,’ 
but it’s actually my roommate, cutting with a knife”. 

Upon completing the tutorial, participants expressed confdence 
that they would be able to create a sound recognition model (avg=5.9, 
SD=1.0): “I feel pretty good—the tutorial and the way you made [SPEC-
TRA] makes it seem pretty straightforward” (P10). They also had 
moderate expectations that a personalized model would identify 
sounds accurately (avg=5.0, SD=1.3) and emphasized the tool’s 
value, even with mistakes: “[It] might [still] be a signifcant ben-
eft over what my baseline is” (P8). However, this optimism was 
tempered by uncertainty due to their unfamiliarity with SPEC-
TRA, machine learning, and/or the efort required to complete the 
workfow: “30 seconds per sound; it sounds like a lot of work” (P4). 

5.3 Using SPECTRA to Interactively Train a 
Personalized Sound Recognition Model 

We describe how participants used SPECTRA’s waveform and spec-
trogram visualizations, interactive data clustering, and rich data 
annotations to train a personalized sound model. 
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5.3.1 Waveform and Spectrogram Visualizations. Sound visualiza-
tions are essential for making audio data accessible to DHH users [20, 
50]. However, how best to visualize sound to support interactive 
training of a sound recognition model is an open research question— 
especially for users who may have diferent mental models of sound 
and/or lack access to the auditory channel itself. Thus, drawing 
on prior work [20], we designed SPECTRA to use waveform and 
spectrogram visualizations for both streaming and static sound in-
formation when recording audio, selecting training examples, and 
testing a new sound recognition model. 

In general, waveforms were rated as highly useful for recording 
and reviewing examples during the IML process (avg.=6.7, SD=1.2). 
Participants found the waveform to be intuitive (P3: “Like one of 
those heartbeats on the EKGs” ), clearly showing that sounds were 
captured (e.g., P12: “I can see the microwave, [...] the four beeps” ) 
or if unwanted sounds occurred, such as “my cough” (P6). The 
waveform’s shape and amplitude helped participants build intuition 
about the model’s classes, highlighting distinctive characteristics 
of sounds (e.g., short “Door closing” vs. sustained “Faucet”) and the 
efects of controllable variables like speed, intensity, and distance 
(e.g., P6: “I can see the diference when I closed the door very hard, it’s 
more thick” ). When constructing a training dataset, the waveform’s 
glanceability proved especially useful for scanning the selection 
grid on the “Train” page to identify examples for removal; P4 noted, 
“The background noise [vs.] whenever I was talking, being able to 
fgure out which one was which—I think that was really helpful.” 

While less preferred overall, participants also found the spec-
trogram useful for reviewing collected audio (avg.=5.1, SD=1.6). 
“The spectrogram, it’s useful too, but it’s not more important than the 
waveform” (P6). Most felt the spectrogram was less intuitive than 
the waveform—“I don’t identify things in my life really based on 
frequency as much as I do based on loudness” (P9)—and some even 
found it “confusing” (P1). However, the spectrogram proved useful 
to a few participants for in-depth reasoning, such as P11: “My con-
cern is with the [ringtone], it looks too similar to the sink faucet. This 
is probably getting mixed up”. Just one participant, P10, preferred 
spectrograms to waveforms; she used it to reason about inaccurate 
predictions: “It said [the faucet sound] was maybe blinds. The blinds 
[spectrogram] had a lot of bands which were more high frequency. 
[...] The slower [faucet] drip, I think, looked similar to that” (P10). 

5.3.2 Interactive Data Clustering. Participants deemed the data 
clustering visualization critical to the IML process—usefulness rat-
ing: avg.=6.3, SD=1.2—primarily because it helped provide trans-
parency, feedback on audio recording quality, and assisted with 
iteratively refning the training dataset. As P7 stated, “[It’s] a good 
depiction of where everything lies and how the model is looking at 
it” (P7). Participants saw clusters as useful when trying to un-
derstand the consistency of samples in a given class as well as 
distinctiveness across classes: “This is the door closing, and it’s clus-
tered right here, so I know that I did a good job” (P8). Clustering also 
served as a bridge for participants to begin considering their data 
in terms of how it may impact the behavior of a ML model – P2 
iterated on their data set until the clustering seemed ‘more clear 
[now]; it doesn’t seem as if there’s a lot of overlap”. For P1, watching 
the clustering change after adjusting the training dataset felt afrm-
ing: “[It] was satisfying to see, ‘Okay, like it’s actually working; what 

I’m doing”’). In contrast to prior work where DHH participants 
expressed uncertainty about the quality of self-collected training 
data [20], using the clustering visualization increased participants’ 
confdence that they had collected their desired data; upon a fnal 
review of his clusterings before training, P4 said, “I feel pretty good 
about this—the [examples] that are remaining.” 

One participant, P9 (HH, hearing aids), felt that the data cluster-
ing visualization was not useful after fnding it would not visibly 
separate his sound classes. Two key problems emerged: frst, he 
captured a new class—a “Garage Door” sound—at a distance, which 
created a noisy sample. Though P9 observed this issue directly in 
the recording visualizations (“It feels like it’s getting something, but 
it’s really tiny [in the visualization]” ), he initially did not understand 
its impact on class separation: “Even when I removed sounds that 
based on the waveforms and spectrograms don’t seem to matter, [the 
sounds] are still really bunched together. [...] ’How can I fx this? Do I 
need a new [garage] door?’ Well, these sounds aren’t gonna change.” 
Despite this frustration, P9 did eventually diagnose the problem: “I 
might just give up on sounds like the garage door, just because they’re 
too close to background noise and it didn’t diferentiate it. I need to 
add some more distinct sounds.” P9’s struggles highlight both the 
importance of good training data and an opportunity for cluster-
ing visualizations to teach users to reason through the diferences 
between human and machine perception of audio. 

5.3.3 Rich Data Annotations. All participants agreed that data an-
notations were useful (avg.=7, SD=0). Because recordings were 
auto-labeled with their sound class, participants did not need to 
add specifc data annotations. But all did, and over 83% (N=100) 
of recordings included an annotation. Most annotations (N=73) 
emphasized diferences in the sound’s production (e.g., P1: “quiet 
knocks” / “louder knocks”) or the recording’s proximity/location 
(e.g., P11, vacuum: “far” / “near”). Several annotations (14) instead 
noted contextual information about the recording, such as the pres-
ence of co-occurring sounds (e.g., P6: “close door so hard and my 
husband’s voice appeared”) or other helpful context (e.g., P5: “the 
faucet started in the middle”). The remaining annotations (13) were 
procedural (e.g., P2: “Phone” / “Phone #2”). 

5.3.4 Training strategies. We identifed two strategies used by par-
ticipants to incorporate the clustering feedback into their training 
data choices. In the frst strategy, participants saw the clustering 
visualization as a method for tracking progress while fltering out 
unhelpful training data, relying on spectrogram or waveform visu-
alizations of each sample to judge the quality of training examples. 
With this approach, participants fagged individual examples for 
removal by comparing their visual shape to the other examples of 
that sound. Often, this was as simple as noting fat waveforms (e.g., 
P2: “It’s important to remove the lines that are quiet” ), but sometimes, 
it involved a nuanced judgment of the visualization’s meaning by 
recalling the recording’s context. For example, after P10 noticed 
“something was diferent when it started” for a faucet recording, she 
reasoned, “It’s probably the water just hitting the sink,” and ulti-
mately chose to include the dissimilar example in her training set. 
After removing one or several examples from the training dataset, 
they generated a new clustering chart to see how their overall train-
ing dataset had changed (e.g., P5: “It’s still a little mixed, but it does 
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seem like the [background noise] is now pulled apart a little bit, and 
the [faucet]” ). 

In contrast, the second strategy leveraged the data clustering 
chart as an interactive tool to identify problematic examples. The 
participants who used this strategy primarily searched for indi-
vidual examples “outside of the group” (P12), embedded far from 
the other examples sharing its label (outliers). Upon selecting an 
outlying example, they turned to the visualization and reasoned 
about its contents (e.g., P4, background noise: “I was maybe talking” ; 
P6, phone: “I put [my phone] on the table” ) to decide whether or 
not to exclude it from the training dataset. Participants taking this 
approach said the clustering visualization “helped me to make more 
sense of the data, but I think more so, it helped to guide me in [the] 
refnement process” (P8). P11 further explained an efciency beneft: 
“I was driven by what I was seeing in the chart [...] to eliminate some 
edge cases and anomalies. [...] Everything is [shown] together, but in 
[the selection panel], I have to compare one by one”. After removing 
an example, they updated the data clustering chart and searched 
for new outliers, repeating this cycle until none remained. Here, 
participants believed that samples that appeared as outliers in the 
clustering visualization represented samples that would not result 
in a high-quality model. 

5.3.5 Design Suggestions. Participants shared suggestions to im-
prove SPECTRA and IML workfow. Some participants (P2, P6) sug-
gested that it would be useful to record sound on a smartphone and 
then continue with interactive model training on a laptop/desktop 
to balance mobile portability with the visual afordances of a larger 
screen. Some participants felt that SPECTRA required too many 
interactions (e.g., unchecking each unwanted example) to produce 
a useful result. Others felt that creating an entirely new model was 
unnecessary, preferring to“append new sounds” (P11) to an existing 
model instead. Finally, participants desired more instruction during 
use. Suggestions for in situ help included “text reminders” pointing 
out problematic examples (P7), “tips about what to look for” (P10) in 
the clustering visualization, and a persistent “guiding hand” (P8) to 
ofer suggestions and assistance throughout the training process. 

5.4 Post-Study Questionnaire and Interview 
Following the IML task with SPECTRA, we concluded the study 
with a questionnaire and semi-structured interview. We describe 
participant refections on using SPECTRA, including reactions to 
model performance, handling and understanding errors, training 
strategies, and new suggested use cases. 

5.4.1 Overall Perceived Usefulness. Overall, participants felt that 
personalized sound recognition and model training was useful and 
“applicable to daily life” (P1), voicing intent to “look into using [it] 
if it becomes widely available” (P10). They noted new possibilities 
for personalized sound recognition models, including “auditory 
pedestrian trafc signals” (P7), “a car alarm” (P10), and “[my] baby 
crying” (P11)—while P2 said, “I would want to record everything”. 
P1 described this newfound sense of agency: “It’s just kind of ex-
citing [...] that it can recognize these specifc sounds and be trained, 
and it’s accessible to people like me.” However, for some, like P8, a 
personalized model did not seem to provide advantages over his 
existing sound awareness adaptations: “I have residual hearing, I use 

a cochlear [implant], so I can probably hear these anyways. [...] doors 
closing and footsteps, I’m going to feel the vibrations in the house.” 

5.4.2 Task Approachability and Self-Confidence. Though most par-
ticipants lacked experience with machine learning, by the end of 
the study, all felt confdent in personalizing a sound recognition 
model with SPECTRA (avg.=6.3, SD=0.9). As P10 expressed, “I was 
kind of surprised that it actually worked—it’s just cool to see” (P10). 
Most found the workfow well designed; “It [was] relatively self-
explanatory once you fddled with it” (P9) and P3, who was origi-
nally timid, “loved it at the end”. Participants felt most confdent 
about data collection (avg.=6.3, SD=1.2) followed by model training 
(avg.=6.2, SD=0.9) and testing (avg.=6.2, SD=0.6). Data collection 
was “pretty simple” (P3), “convenient” (P9), and “unique” because “I 
don’t normally think about [these sounds] in terms of recording” (P7). 
However, the training and testing stages were harder: P4 indi-
cated “not understanding” at frst. Most cited the visualizations 
as useful and learned to judge data quality themselves; e.g., “[The 
clustering supported] understanding of what’s happening under the 
hood” (P8). Though the “Testing” tab was “well-designed” and “com-
fortable” (P11), some participants struggled to understand how to 
improve model performance. 

5.4.3 Reactions to Perceived Model Performance. In general, partici-
pants felt that their personalized models classifed sounds accurately 
(avg=5.3, SD=1.4). In several cases, model performance exceeded 
participant expectations. For example, although P2 initially wanted 
to “skip [testing] ‘Door knocking”’, assuming it was“just going to 
overlap” with ‘Door Closing’, his custom-trained model success-
fully discriminated between the two sounds: “Awesome, I think it 
was accurate.”. And P4 was “very satisfed” with his model, despite 
having low expectations due to prior experience with Android’s 
Live Transcribe: “I’m very satisfed with how it turned out, but I think 
if I hadn’t been exposed to [Live Transcribe], then I would have a 
higher bar.” However, P9’s high initial expectations were tempered 
after “learning more about the process” and understanding that “it 
can’t pick up all [the] sounds.” 

5.4.4 Handling and Understanding Errors. In the pre-use question-
naire, participants acknowledged that some sound recognition er-
rors are likely unavoidable, and these perspectives remained consis-
tent throughout the session. A few participants mentioned false pos-
itives as more tolerable than false negatives before using SPECTRA. 
P11 maintained this perspective while testing his model, even after 
it mistook his phone vibration for “TV” and “Door closing” sounds: 
“I’d be okay with [that] because it tells me something’s happening 
around the house.” P9 “really liked” confdence scores displayed 
with the model’s predictions, as it allowed him to reason about 
misclassifcations using his residual hearing abilities: “If it’s at 100%, 
maybe I heard [the sound], but if it’s at 75%, maybe I didn’t, so maybe 
I should look more into it. And if it didn’t come up [on the screen] and 
I feel like I heard it, then it’s not [working].”. 

5.4.5 Strategies to Improve Model Performance. Participants’ expe-
riences with SPECTRA shaped their perceptions of and intentions 
for future use of IML for personalized sound recognition. This en-
gagement with the system caused them to grapple with the complex-
ity of training an accurate sound recognition model—seven partici-
pants’ self-reported understanding of how to improve their model’s 
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performance actually declined (fve ratings increased). Though iter-
ative model refnement is a cornerstone of IML pipelines [13], none 
of our participants trained a second model due to time constraints 
or fatigue. However, they shared several ideas for what they would 
do diferently if they were to personalize a new model in the future. 

Some participants sought more practical sound classes, either 
adding “more [...] things that are important to me” (P7) or removing 
less valuable sounds, such as “the door opening and closing, I don’t 
think I need that” (P2). Non-expert users commonly believe they 
will see performance gains by adding more training data indiscrim-
inately [67]; a few participants voiced similar ideas. But others 
sought to be more selective with their datasets, seeing promise in 
further data refnement—such as by removing outliers in the clus-
tering chart (P10: “the little points there, sticking out” )—or recording 
additional sound variations to introduce edge cases. For example, 
P1 was “curious” how her model would respond to “diferent kinds of 
doors or diferent ringtones”. Participants also sought to adjust their 
chosen sound classifcation schemes. Following misclassifcations 
during testing, P12 aimed to resolve “overlapping sounds” in his 
clustering chart, realizing that: “Shower and the faucet [...] maybe I 
could combine [those] and have ‘water running”’ (P12). Similarly, P4 
sought to improve the performance of his “Fridge” class; recalling 
its two separated clusters, “[I would] focus on just the ‘ice’ [dispenser], 
just because the ‘water’ [dispenser] is similar enough to the ‘Faucet’. 
[...] [I’m] confusing the model by having two diferent sounds come 
out of the same object.” 

6 Discussion 
Our work advances understanding of how to support DHH users 
in training personalized sound recognizers by: (1) investigating 
non-auditory data representations across an end-to-end training 
cycle for data collection, training data selection, and practical test-
ing; (2) demonstrating how interactive data clustering can support 
DHH users to reason about audio data, identify outliers, and re-
fne training datasets; and (3) provide insights into DHH users’ 
experiences and perspectives on personalizing a sound recognition 
pipeline. Our work also reafrms prior work showing DHH users’ 
preference for waveforms when recording [20]—while expanding 
on their value when selecting training data and testing—and how 
training strategies can change through use [50]. Below, we situ-
ate our fndings in the literature, ofer design considerations, and 
discuss limitations and opportunities for future work. 

6.1 Design Considerations for Interactive Sound 
Recognition Tools 

Based on our evaluation of SPECTRA, we share the following design 
considerations for future tools: 

Interactive clustering visualizations. We found clustering efec-
tively provides non-auditory feedback on interclass relationships, 
supporting DHH users’ understanding of an audio dataset (a key 
challenge identifed in prior work [20]) as well as their iterative re-
fnement of a training subset. In this way, the visualization enables 
more active participation in model training —another challenge 
for DHH users [50]. To better highlight the impact of training data 
inclusion or exclusion, participants requested visual cues or side-
by-side comparisons. Designers should also be mindful of potential 

overftting when users rely solely on clustering for training data 
selection. Future work could investigate how inclusion and exclu-
sion decisions may impact model performance and provide user 
feedback accordingly. To further mitigate overftting, encourage 
users to focus on outliers and overlap and emphasize clustering as 
a representation of the model’s perspective rather than the ground 
truth of decision boundaries. 

Waveforms. Our fndings suggest that waveforms are essential for 
DHH users throughout the IML workfow, and their single dimen-
sion of amplitude (loudness) vs. time is intuitive for this population. 
For DHH users to monitor sound input and their soundscape, wave-
forms should be displayed prominently before and during recording 
(extending prior work [20]) and when testing models. When se-
lecting training data, waveforms ofer a glanceable representation 
that provides transparency into individual audio examples and adds 
context for locations within the clustering visualization. 

Spectrograms. While spectral features are the standard input for 
sound recognition models [22], spectrogram visualizations did not 
ofer a signifcant beneft for DHH users in our study. In contrast to 
the waveforms’ simple vertical amplitude, spectral information de-
picted by frequency on the vertical and amplitude as color intensity 
is less intuitive—even confusing—for DHH users. However, spectro-
grams may ofer limited value for in-depth analysis when selecting 
training data (particularly to experienced users [61]). Other time-
frequency visualizations, such as correlograms or pitchograms [9], 
may ofer more value as visual analysis tools for this population 
and present an opportunity for future work. 

Annotating. Our fndings suggest that allowing DHH users to 
provide notes about a sound’s production, location, and context aids 
their understanding and ability to use an IML workfow. Some an-
notations drove users’ exploration of nuanced subcategories within 
a sound class; designers can proactively support this by suggesting 
potential subcategories from the start (e.g., generating subcategories 
for a given sound class via a language model). Highlighting anno-
tated subcategories visually in the clustering (e.g., P11: two discrete 
clusters for diferent phone ringtones) can further expose distinc-
tions in the model’s decision space, aiding comprehension. Concept 
decomposition options [52] can streamline clustering insights— 
either to separate disparate clusters into their subcategories (e.g., 
P4: fridge → water, ice dispenser) or to combine overlapping classes 
(e.g., P12: faucet, shower → water running). 

Multiple views of information. Our study highlighted that DHH 
users benefted from the interplay of multiple views of sound data: 
clustering provided high-level structure, waveforms showed indi-
vidual example content, spectrograms ofered nuanced detail (to 
some), and annotations supplied context. Future systems could 
incorporate multimodal information, such as allowing users to cap-
ture video recordings of sounds for an additional analysis dimension 
that leverages users’ visual reasoning and memory. 

System format. Participants wanted to capture data on mobile 
devices but requested fexibility in the device for IML; cloud-based 
applications can allow users to take a multi-device approach. When 
adapting IML workfows to mobile formats—the device form fac-
tor that is ultimately preferred for daily sound awareness [15]— 
prioritize waveforms for data collection, clustering throughout 
training, and waveforms + predictions during testing. 
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6.2 Future Opportunities for Efciency and 
Model Optimization 

We found clear limits to the time and efort that DHH users are 
willing to invest in personalizing sound recognition models, creat-
ing a tension with streamlining personalization tasks for efciency 
without reducing users’ engagement in an interactive training pro-
cess [1, 13]. Prior work [28] found that Android sound recognition 
users hoped to spend less than 25 minutes on personalization; train-
ing a model with SPECTRA required considerably more time—the 
allotted hour for most users—and those with time remaining de-
clined to retrain their model. While users found the clustering 
visualization highly engaging, data selection was a key area to 
streamline: improved data processing (e.g., automatic segmentation, 
silence removal) can reduce data cleaning eforts, while automatic 
outlier detection (e.g., [54]) can highlight atypical examples. 

Optimized ML architectures or extensions to pre-trained models 
can further reduce the efort required for interactive personaliza-
tion. While SPECTRA’s Speech Commands API [62] was well-suited 
for prototyping interactive training workfows for our study, Jain 
et al.’s ProtoSound is a more optimal architecture for the daily 
needs of DHH users (e.g., contextual fexibility, open set classif-
cation) [28]. Protosound combines few-shot learning with proto-
typical networks to train custom sound models that outperform 
comparable architectures (including with DHH users’ recordings); 
however, ProtoSound’s “black box” interface lacks audio visual-
izations and control of the training dataset. As SPECTRA focuses 
specifcally on frontend support, combining it with ProtoSound is a 
clear next step to improve the baseline performance of users’ mod-
els, reducing time for model refnement. For example, SPECTRA’s 
clustering visualization integrated within the ProtoSound pipeline 
could include embeddings generated from the model’s internal 
feature representations, yielding true insight into how the model 
diferentiates sounds and its decision-making process. Finally, our 
fndings also highlight that rather than create a new model, some 
users feel that adding custom classes to existing sound models is a 
simpler task. Similar customization features are supported in iOS 
(tuning existing classes) [2] and Android (adding new classes) [21], 
but these, too, lack accessible data representations and training 
insight; supporting the interactive extension of pre-trained models 
is an opportunity for future work. 

6.3 Limitations 
Our work has three primary limitations. First, we did not conduct 
formal analyses of the participants’ models and thus cannot defni-
tively quantify the impact of SPECTRA’s accessibility features and 
participants’ decisions on model performance. Further, the quality 
assessment stage was limited to reproducing their model’s trained 
sounds within the system and did not include metrics about the 
model; as a result, participants’ high opinion of their models may 
have been infated due to the lack of long-term practical use. Sec-
ond, while our evaluation presented SPECTRA within a familiar, 
domestic soundscape, we acknowledge that new challenges with 
user-driven personalization may emerge in complex acoustic envi-
ronments with many similar and/or overlapping sounds. Future lon-
gitudinal studies are needed to investigate interactive training and 
deployment within busy or unfamiliar locations—settings where 

DHH users may most need sound awareness support [15, 20]. Next, 
while we did not aim to recruit people with ML expertise, fve of 
the 12 participants had hands-on ML experience. Though often not 
extensive and not in the audio domain, this experience suggests that 
our participants may not represent the general public, limiting the 
generalizability of our fndings. Finally, we had limited control of 
the testing environment: our remote evaluation using videoconfer-
encing software led to greater setup and troubleshooting time while 
reducing opportunities for retraining, experimentation, and/or dis-
cussion for some participants. The abbreviated experience may 
have impacted participants’ opinions about their models, and fu-
ture longitudinal studies can better explore how users’ perceptions 
change through continued use. 

7 Conclusion 
In this paper, we presented SPECTRA, an interactive system to 
meet the needs of DHH users when training personalized sound 
recognition models. We evaluated the prototype in a hands-on 
model-training session with 12 DHH participants; our fndings 
highlight the potential for interactive clustering and audio visu-
alizations to support accessible exploration and interpretation of 
an audio dataset, and rich text annotations to prompt varied and 
realistic data collection. In addition, we explore the unique opportu-
nities and challenges that interactive training poses to DHH users, 
including the impacts of this experience on users’ confdence and 
understanding of sound recognition systems. Our work provides 
insights for the design of future tools in this area. 
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